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Three recently proposed hyperelastic models for granular materials are compared with experiment data.
Though all three are formulated to give elastic moduli that are power law functions of the mean stress, they
have rather different dependencies on individual stresses, and generally differ from well established experi-
mental forms. Predicted static stress distributions are in qualitative agreement with experiments, but do not
differ greatly from isotropic linear elasticity, and similarly fail to account for variability in experiment data that
presumably occurs due to a preparation dependence of granular materials.
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I. INTRODUCTION

Despite their ubiquity in nature and industry, granular ma-
terials and their behavior are not always well understood. A
striking example is the static stress distribution, easily ob-
tained for conventional materials, but still a topic of some
debate for granular materials �1�. Though in most situations
plastic deformations dominate in granular materials, the
static regime is generally assumed to be elastic, and isotropic
linear elasticity �ILE� is sometimes employed. However,
stress-strain relations for granular media �even in the small-
strain, reversible regime� are known to be nonlinear. Choos-
ing an appropriate form can meet with theoretical difficulties.
Zytynski et al. �2� noted that such models do not necessarily
conserve elastic energy; an incremental stress-strain relation
may not even result in a closed cycle of strain when sub-
jected to a closed cycle of stress, giving rise to a sort of
“irreversible elasticity.” In order to avoid such difficulties, it
is necessary to begin with a hyperelastic model, in which the
elastic constitutive behavior is derived from an appropriate
scalar free energy. This approach was advanced by Houlsby
and colleagues �3–5�, and was incorporated into a thermody-
namically consistent elastoplastic framework termed “hyper-
plasticity” �6�.

In the present work, we are interested in the purely elastic
regime of dry, cohesionless granular materials, and suitable
hyperelastic models that would govern static stress distribu-
tions and sound propagation in them. Such materials are
known to have elastic moduli that vary with the mean stress,
typically K, G� P1/2, though the Hertz theory for individual
particle contacts suggests K, G� P1/3 �7�. Linear elasticity
possesses constant elastic moduli, as it has a quadratic free
energy; neglecting temperature �here and throughout�, it pos-
sesses the Helmholtz free energy F,

F =
1

2
K�2 + Gus

2 �1�

where � and us
2 are the first and second strain invariants,

� � − uii, �2�

us
2 � uij

0 uij
0 , �3�

uij
0 � uij −

1

3
u���ij . �4�

Equivalently, ILE is defined by the negative Gibbs free en-
ergy G,

G =
P2

2K
+

�s
2

4G
�5�

in terms of the stress invariants
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�ij
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which may be obtained from Eq. �1� via the Legendre trans-
form �6,8�. The linear stress-strain relation is obtained by
differentiating

�ij =
�F
�uij

�9�

or

uij =
�G
��ij

. �10�

A suitable nonlinear form, then, should be obtained from an
appropriately modified elastic potential. Three such poten-
tials have recently been proposed that are suitable for cohe-
sionless granular materials. The purpose of the present work
is to present a comprehensive comparison of these models
with experiment data for the stress dependence of elastic
moduli, and static stress distributions in various configura-
tions.*paul.humrickhouse@inl.gov
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II. HYPERELASTIC FORMS

A. Granular elasticity

The following Helmholtz free energy has been proposed
by Jiang and Liu �9�:

F = A�a�2

5
��2 + us

2� . �11�

This is the quadratic form of the free energy of ILE, mul-
tiplied by �a; the two elastic constants are A �units of stress�
and � �dimensionless�. Such a modification will give elastic
moduli that are power law functions of the strains, or
stresses; Jiang and Liu take a=1 /2 �consistent with “Hertz
contacts,” K, G� P1/3� and call this “granular elasticity,” or
GE, given by the free energy

F = A	��2

5
��2 + us

2� . �12�

A large body of experiment data, on the other hand, suggest
K, G� P1/2, implying a=1. This gives a free energy cubic in
the strains,

F = A�2

5
��3 + �us

2� , �13�

which we refer to as GE-cubic or GE-C. We investigate both
choices in what follows; the discrepancy has been given vari-
ous micro-mechanical interpretations in the literature
�10,11�.

Jiang and Liu have examined GE in a series of papers
�9,12–17�, and found it to exhibit a number of desirable fea-
tures for granular materials, which we briefly summarize
here. Recalling that �=−uii will be positive in compression,
it is immediately apparent that, due to the 	� terms, there are
no tensile solutions. The nonlinear form also results in a
coupling between shear and volumetric stresses and strains

P �
�F
��

=
2

5
A��a + 2��a+1 + aA us

2

�1−a , �14�

�s �
�F
�us

= 2A�aus. �15�

Solving the above for ��us , P� and plotting us vs � at differ-
ent values of P �9,17� reveals shear dilatancy: the compres-
sion � decreases with increasing shear us.

Perhaps the most interesting feature of GE, and unique to
it among the models considered here, is the prediction of a
mechanically unstable region. Stability requires that the free
energy F be a convex function of the strains �8�:

�2F
��2 � 0, �16�

�2F
�us

2 � 0, �17�

�2F
��2

�2F
�us

2 − � �2F
�� � us

�2

� 0. �18�

In linear elasticity, the first two conditions require that the
elastic moduli are positive, in which case the third condition
is satisfied as well. Similarly for GE, � and A must be posi-
tive, but the third condition gives an additional constraint
�9,14,16,17�,

us
2

�2 �
2��a + 2�

5a
. �19�

Noting that the stress invariants are given by Eqs. �14� and
�15�, the stability limit can be rewritten in terms of the
stresses,

�s

P
=	 5

2�a�a + 2�
. �20�

This is precisely the Drucker-Prager yield criterion �18�. It
should be noted that this limit on the ratio of stress invariants
is not the same as the ratio of shear to normal stress compo-
nents on a plane that defines the Coulomb condition and the
friction angle,


 �n

�n

 	 
 f = tan � . �21�

An expression for the yield angle can be obtained, though,
by considering an inclined granular layer, infinite in two di-
rections. Solution of this problem �9,19,20� gives a yield
angle in terms of only the constant � and exponent a,

tan �y =

	��a + 2�
5a

−
1

3

2

5
��a + 2� +

2

3

. �22�

The unexpected feature of this relation is a peak in �y when
plotted against � �Fig. 1�. Though it is stated elsewhere
�14,16� that �=5 /3 coincides with �y =28°, the peak for GE
�a=1 /2� is �y �26.5° at �=4 /3. Furthermore, while one
might expect higher yield angles for “real” �e.g., nonspheri-
cal or irregular� materials, taking a=1 to better match experi-
ment data shifts the curve even lower, peaking at �=5 /3,
�y �17°. Generalizations of the Jiang-Liu form were inves-
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FIG. 1. The yield angle �y for GE as a function of �. The
maximum occurs at �26.5° for a=1 /2 and �17° for a=1.
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tigated in �20�, including an extension with an additional
dependence on the third strain invariant, but none of these
alleviated this difficulty.

The yield angle curve is open to some interpretation, as
the infinite plane assumption implies zero normal strain in
the infinite directions. The stress state will be more compli-
cated in a finite system, say an inclined box, and presumably
not analytically tractable. Experiments do indicate that the
presence of side walls can increase the yield angle �21,22�.
But in both cases, yield angles approached an asymptotic
value as the system size increased, so we expect that the limit
of infinite extent should, in fact, give a reasonable estimate
of the yield angle, provided that the system is large relative
to the grain size. But it is not clear how GE might be modi-
fied to allow for higher angles.

B. Model of Einav and Puzrin

Similar arguments were employed by Einav and Puzrin
�EP�, who proposed a nonlinear form of the Gibbs free en-
ergy �23�. This approach is advantageous in that it gives the
elastic moduli as explicit functions of stresses rather than
strains, making for a more straightforward comparison with
experiments. A special case of their general form for the
negative Gibbs free energy �G� appropriate for cohesionless
dry granular materials is

G =	 1

PB
��P2 + �s

2� . �23�

Here we use the same notation as for GE, and employ two
constants � �dimensionless� and B �units of stress�. This par-
ticular form is chosen to give elastic moduli with the familiar
P1/2 dependence found in experiments. While this is the
same sort of modification applied to the Helmholtz free en-
ergy in GE, the two are not equivalent; complementary po-
tentials can in principle be obtained via the Legendre trans-
form, though there is no closed form solution for the Gibbs
free energy for GE, or the Helmholtz free energy for EP.

Stability requires that the Gibbs free energy be a concave
function of the stress, or equivalently that the negative Gibbs
free energy G be convex. So we require

�2G
�P2 � 0, �24�

�2G
��s

2 � 0, �25�

�2G
�P2

�2G
��s

2 − � �2G
�P � �s

�2

� 0. �26�

Positive constants B and � are sufficient to satisfy all three;
thus, EP does not possess the mechanically unstable region
of GE.

While G lacks this stability constraint, it does possess a
Drucker-Prager type limit. Identifying

�G
�P

= � =
3

2
��P

B
�1/2

−
�s

2

2B1/2P3/2 �27�

and solving for �s,

�s = 	3�P2 − 2�B1/2P3/2 �28�

or in terms of the stress ratio

�s

P
=	3� −

2�B1/2

P1/2 . �29�

Assuming � is positive to ensure compression rather than
tension, there is still a Drucker-Prager type limit on the stress
ratio �Fig. 2� given by

lim
P→

�s

P
= 	3� . �30�

This was noted by Einav and Puzrin, who also recognized
that the shear-volumetric coupling resulting from such a po-
tential is appropriate for granular materials. It can be shown
that this coupling similarly results in shear dilatancy �19�.

C. Model of Houlsby, Amorosi, and Rojas

The limiting stress ratio was considered undesirable by
Houlsby, Amorosi, and Rojas �HAR�, who proposed another
potential �24�. Citing additionally the desire for ease of ma-
nipulation, particularly the ability to convert between Helm-
holtz and Gibbs free energy forms, they propose raising the
entire quadratic expression of ILE to an appropriate power.
The special case that gives K, G� P1/2 can be written

F = A���2 + us
2�3/2, �31�

where again we employ the notation of GE, using a constant
with units of stress �A� 1 and another which is dimensionless
���. This potential has no unstable region as in GE, or lim-
iting stress ratio as in EP. It also allows for tension as well as
compression, and shear in the absence of compression ��s
�0 when P=0�, neither of which can occur in dry cohesion-
less materials. The complementary energy can, however, be

1There should be no confusion of the constants A in the HAR
model, and A in GE.
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FIG. 2. The stress ratio �s / P as a function of pressure, for �
=1 and B=1012 �arbitrary units�.
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obtained via the Legendre transform �6,24�; in this case it is
�19�

G =
2

3	3A
� 1

�
P2 + �s

2�3/4
. �32�

The HAR model also possesses shear-volumetric coupling,
leading to shear dilation as with GE and EP �19�.

III. ELASTIC MODULI

A. Pressure dependence

It was noted previously that dry, cohesionless granular
materials invariably possess elastic moduli that vary approxi-
mately as P1/2. This sort of stress dependence is built into the
GE-C, EP, and HAR models described above. Consider the
case of pure compression, in which �s ,us=0. The bulk
modulus is given by

K =
P

�
=

1

�

�F
��

�33�

or equivalently

1

K
=

�

P
=

1

P

�G
�P

. �34�

For the GE-C �Eq. �13��, EP �Eq. �23��, and HAR �Eqs. �31�
and �32�� models, this leads to

K =	6�A
5

	P , �35�

K =
2	B

3�
	P , �36�

K = 	3A�3/4	P . �37�

So all three models give a bulk modulus that indeed varies
with the square root of pressure. However, experiments have
identified more specific stress dependence, which we inves-
tigate in this section. In particular, we may obtain analytical
forms from the hyperelastic models and compare directly
with the orthotropic compliance matrix,

�
1

E1
−

�21

E2
−

�31

E3
0 0 0

−
�12

E1

1

E2
−

�32

E3
0 0 0

−
�13

E1
−

�23

E2

1

E3
0 0 0

0 0 0
1

G12
0 0

0 0 0 0
1

G23
0

0 0 0 0 0
1

G13

 . �38�

As the hyperelastic models have only two elastic constants,

they are not inherently anisotropic; but as we will see, stress
dependence induces anisotropy. Thus we can account for
stress-induced, but not “fabric,” anisotropy with these mod-
els.

A well-studied simplification of the above is the triaxial
test, in which all three shear stress components are zero. If
two horizontal components of normal stress ��1 and �3� are
equal, we may further simplify the compliance matrix to

�
1

Eh
−

�vh

Ev
−

�hh

Eh

−
�hv

Eh

1

Ev
−

�hv

Eh

−
�hh

Eh
−

�vh

Ev

1

Eh

 . �39�

Many experiments have been carried out on granular mate-
rials in this configuration, all of which find similar stress
dependence of the elastic moduli; we compare these to the
predictions of the hyperelastic models in what follows.

B. Comparison of theories and experiment

1. Poisson’s ratio

It is useful to first consider Poisson’s ratio, as it can be
related to the dimensionless constants in each of the hyper-
elastic models. It is apparent from the form of the compli-
ance matrix �Eq. �38�� that

�ij = −

�2G
�� j � �i

�2G
��i

2

. �40�

Thus, we may obtain analytical expressions from the EP and
HAR models. For the GE-C model, we have instead the stiff-
ness matrix as a function of the strains, which must be in-
verted. In every case, the scale constants �A, A, and B� can-
cel, so Poisson’s ratio depends only on the stresses and the
dimensionless constants �, �, and �. In the limit of isotropic
stress, all stress dependence cancels, and so, for the EP and
HAR models, the experimental data on Poisson’s ratio
should give some idea what an appropriate range of values is
for � and �. For GE-C, �=5 /3 is fixed in order to maximize
the yield angle.

For the case of isotropic stress, �1=�2=�3, all three mod-
els give a constant Poisson’s ratio,

�iso =
18� − 5

36� + 5
, �41�

�iso =
8 − �

16 + �
, �42�

�iso =
6� − 1

12� + 1
, �43�

for the GE-C, EP, and HAR models, respectively. Some ex-
perimental data indicate �iso is as small as 0.1–0.2, for ex-
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ample �iso=0.163 �25�. For GE-C, this implies ��0.479, for
which there are no solutions �Fig. 1�; thus we see that the
stress limits imposed by this model can be restrictive. For the
EP and HAR models, there are no such restrictions, and we
are free to choose � and � to match experimental values of
Poisson’s ratio. The isotropic values given above provide
some idea what range of values for � and � are appropriate
for real materials. We do not in practice encounter negative
Poisson’s ratios in granular materials, so we do not expect
��8 or ��1 /6. For isotropic, linear elastic materials, sta-
bility requires �	0.5; there is no such restriction on aniso-
tropic materials, and some values of � greater than 0.5 have
been observed �26�. The isotropic value is typically lower,
however, than 0.5. For the EP model this merely implies �
�0, which is already required for stability. The relationship
between � and �iso is plotted in Fig. 3. �iso is equal to 0.5 in
the limit �→ in the HAR model, though it reaches a value
of 0.44 at �=2 �Fig. 4�. So, 1 /6���2 may be taken as an
approximate range of validity.

2. Young’s modulus

Experiments find that the Young’s moduli are not just
functions of the mean stress, but of the stress in a particular

direction. More precisely, Young’s modulus in a given direc-
tion is a power law function of the normal stress in that
direction, but is independent of all other stresses. The experi-
mental data are well fitted by the following expressions:

Ev = Cv�v
n , �44�

Eh = Ch�h
n, �45�

where n is never far from 1/2 �25–36�, and here the constants
C must have units of P1/2. Cv�Ch implies some degree of
fabric anisotropy, as then Ev�Eh even when �v=�h; con-
versely, if Cv=Ch, the Young’s moduli are equal if the
stresses are equal, but anisotropic stress states induce aniso-
tropy.

From Eq. �38�, it is apparent that for Gibbs free energy
models, Young’s modulus is given analytically by

Ei =
1

�2G
��i

2

.

The resulting expressions for the EP and HAR models, re-
spectively, are

Ev

B
=

4	3�2
�h

B
+

�v

B
�5/2

�� + 6���v

B
�2

+ �4� + 36���v

B
���h

B
� + �4� + 102���h

B
�2 �46�

Ev

A
=

18�3/4��6� + 1���v

A
�2

+ �− 12� + 4���v

A
���h

A
� + �6� + 4���h

A
�2�5/4

�36�2 + 12� + 1���v

A
�2

+ �− 72�2 + 12� + 4���v

A
���h

A
� + �36�2 + 84� + 4���h

A
�2 �47�

For GE and related Helmholtz free energy models, the situ-
ation is more complicated. Here we have a stiffness matrix of
strain dependent terms, and equations for the stresses �v and
�h, also in terms of the strains. There are not simple expres-

sions for Young’s moduli as functions of stress, but inverting
the stiffness matrix gives Ev and Eh in terms of the strains.
With �v, �h, Ev, and Eh given as functions of the strains, we
may plot their relationship parametrically.
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FIG. 3. The isotropic Poisson’s ratio as a function of dimension-
less material constant � in the EP model.
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FIG. 4. The isotropic Poisson’s ratio as a function of dimension-
less material constant � in the HAR model.
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A noteworthy aspect of the experiment data fits �Eqs. �44�
and �45�� is the assumption that the vertical Young’s modulus
is a function of only the vertical stress, and similarly the
horizontal Young’s modulus is a function of only the hori-
zontal stress. This independence is not present in the hyper-
elastic models, for which each Young’s modulus depends on
all the stress components. It should at least be preferred that
the Young’s modulus in a given direction depends only
weakly on the stresses perpendicular to that direction. Con-
sider, then, the expressions for Ev resulting from the hyper-
elastic models. The parametric plot for GE-C is shown in
Fig. 5, and Eqs. �46� and �47� for the EP and HAR models
are shown in Figs. 6 and 7. It is apparent that both the GE-C
and HAR models predict significant variations in Ev with �h,
in contrast with experiment data. The GE-C model gives a
particularly sharp drop at the limits of stability; it should be
noted that stress ratios outside the range plotted in Fig. 5
mark, approximately, the observed limits of the elastic re-
gime �36�. In the EP model, though Ev is not explicitly inde-
pendent of �h, there is very little variation over the entire
range of stress ratios in the elastic regime.

Of course, in addition to this independence, we expect
that Young’s modulus should vary approximately with the
square root of the in-plane normal stress component, as ob-
served in experiments �Eqs. �44� and �45��. The EP and HAR
expressions for Ev are plotted against �v in Figs. 8 and 9, and

the parametric plot for GE-C is shown in Fig. 10. The scaling
here is arbitrary, so it is the shape, not the magnitude, of the
curves that is of interest. While none of the models are ex-
actly linear on the log-log plots, it is clear that the EP model
is the best of the three at capturing this behavior. The HAR
model is a worse match to experiment data for increasing
values of �, and once again we have fixed �=5 /3 for GE-C
in order to achieve the maximum yield angle of �17°.

3. Shear modulus

Finally, we consider the shear modulus obtained from the
models and experiments. This is frequently measured by
shear wave propagation in a triaxial or other specimen. The
shear modulus is identified as

Gij =
1

�2G
��ij

2

�48�

according to Eq. �38�. This results in a shear modulus for the
EP model of

G =
	BP

4
. �49�

There is no stress-induced anisotropy in the shear moduli in
this case, i.e.,
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FIG. 6. The vertical Young’s modulus Ev as a function of the
horizontal stress �h for the EP model, �v /B=1. Ev varies only
slightly with �h, in relative agreement with experiment data, where
there is no dependence of Ev on �h.
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G = G12 = G23 = G13. �50�

The shear modulus is simply proportional to the square root
of the mean normal stress P. This, of course, was the idea
behind all the hyperelastic forms presented here, and the
shear modulus �just as with the bulk and Young’s moduli�
does take this form when plotted against the mean stress.
Roesler �37� and others �28,29,31,36,38�, however, find a
more specific relationship between the shear modulus and
stress; they find that the shear modulus does not depend on
the normal stress acting on the plane of shear, e.g.,

G12 � f��33� �51�

and is a function of only the other two normal stresses, e.g.,

G12 � ��11�22�1/4. �52�

The HAR model has an additional dependence on the shear
stress,

Gij =

	3A� 1

�
P2 + �s

2�5/4

2��ij
2 +

1

�
P2 + �s

2� �53�

as does GE �16�. All three models predict the same depen-
dence of the shear modulus on each component of normal
stress. It should be noted that shear moduli with different
dependence on the normal stress components can only be
obtained from a free energy that also depends on the third
stress �or strain� invariant.

IV. STRESS DISTRIBUTIONS

GE has been implemented in finite element codes and
used to calculate stress distributions in sand piles �14�, silos,
and granular layers subject to a point load �15�, and agrees
relatively well with experiment data. As the EP and HAR
models are not as extensively tested, they have been imple-
mented �along with GE� in the finite element code Abaqus
�39� and are compared against the same sets of experiment
data here. Note that in this section we revert to using GE
�with a=1 /2� rather than GE-C �with a=1� in order to make
a direct comparison with published results for GE �14,15�.

A. Abaqus Implementation of nonlinear elastic models

One may implement any desired material behavior in
Abaqus through the user material �UMAT� subroutine. In the
present case of nonlinear, small strain elasticity, this simply
requires providing the stiffness matrix, which may be any
function of stresses, strains, or both �and, in principle, any
other variable�. For GE and HAR, this is straightforward; as
both possess a closed form of the Helmholtz free energy, the
stiffness matrix may be obtained by differentiating,

Mijk� =
�2F

�uij � uk�

. �54�

For the EP model, differentiating the Gibbs free energy gives
the compliance matrix,

Cijk� =
�2G

��ij � �k�

. �55�

The compliance matrix must be inverted to obtain the stiff-
ness matrix for Abaqus, which gives the stiffness matrix in
terms of the stresses, whereas the stiffness matrix obtained
directly from the Helmholtz free energy in GE and HAR is a
function of the strains. Either is equally acceptable for
Abaqus. The three problems of interest can all be treated
with either plane strain or axisymmetric simplifications, in
which there is only one component of shear stress and shear
strain.

B. Sand piles and the stress dip

First we turn our attention to the sand pile experiments of
Vanel et al. �40�. They found a dip in the vertical stress
beneath the center of conical and wedge shaped piles poured
from a point source, but not for those poured rainlike from a
sieve. GE reasonably matches the cases without a stress dip
�14�, so we shall make the same comparison with the EP and
HAR models here. The piles considered by Vanel et al. are 8
cm high, 26 cm in diameter or width, and 20 cm thick in the
case of the wedge. The density of the material is not re-
ported, and results are normalized with respect to it. Follow-
ing Krimer et al. �14�, the density is taken here to be
2660 kg /m3, typical of the sand used in experiments �36�.
At the bottom of the pile, the r and z displacements are set to
zero. In addition to gravity, a small pressure is applied to the
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free surface at the top of the pile where P=0; this is neces-
sary to prevent divergence of 1 / P and 1 /� terms in the
stiffness matrix. The pressure applied at the surface ensures
numerical stability, but does not impact the stress distribu-
tions away from the surface in any meaningful way, provided
it is sufficiently small �10–20 Pa is used here�. This is the
same method employed in calculating stress distributions
with GE �14,15�. Note, however, that this creates a problem
if the objective is to predict yielding in the pile. Say, for
example, that a pile is sufficiently steep that shear stresses
exceed a critical fraction of the normal stresses, and we ex-
pect yielding to occur at the surface. Application of an addi-
tional normal stress at the surface will lower the stress ratio
and provide stability in this case as well. It is worth noting
that while the GE yield angle can be at most 26.5°, the model
is applied to 33° sand piles without difficulty, presumably
due to this additional normal force.

Unlike GE, in which � is fixed by the maximum yield
angle, we are free to pick the values of the material constants
� and � in the HAR and EP models. The same applies to A
and B, though their values are not relevant for the current
comparison; they scale the strains but do not change the
stresses. Lacking any strain measurements from the current
experiments, their value cannot be determined. The stress
distributions for conical piles are shown in Fig. 11, and the
plane strain results for wedge-shaped piles in Fig. 12. Since
we are free to choose � and � in the HAR and EP models,
several different values are tried for both conical and wedge-
shaped piles. Their values do not strongly influence the stress
distribution at the bottom of the pile in either case. The in-
crease in stress from the edge of the pile toward the center is
quite linear, as opposed to the experiments in which there is

a significant leveling off �40�. Interestingly, none of the non-
linear models is appreciably different from isotropic linear
elasticity �ILE� in this case; ILE is similarly independent of
Young’s modulus E, and only weakly dependent on Pois-
son’s ratio �. It gives a better match to experiment data than
the EP and HAR models, particularly for the conical pile,
though it still overestimates the peak height ��0.6 for coni-
cal and �0.8 for wedge-shaped piles �40��. None of the mod-
els produces a stress dip, though GE has reproduced one
when a varying density was imposed �14�.

C. Janssen Silo problem

Bräuer et al. �15� have calculated stress distributions in
silos for comparison with the well known Janssen model
�41�. The essential features of the Janssen model are saturat-
ing vertical stress with depth, the weight being supported by
wall friction, and a constant ratio of vertical to horizontal
stresses defined by the Janssen constant kJ,

�rr = kJ�zz. �56�

For a silo of radius R and wall friction coefficient 
 f, the
vertical stress is given by

�zz =
�gR

2kJ
 f
+ ��0 −

�gR

2kJ
 f
�exp�− 2kJ
 f

R
z� . �57�

They find these assumptions well satisfied by GE, with �zz
saturating for large depths z, and the ratio �rr /�zz becoming
approximately constant; they find kJ�0.4. With �=5 /3 fixed
by the yield angle, the Janssen constant is fixed as well,
though it is in practice found to vary by material �42�. The
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Abaqus implementation of GE produces results consistent
with those published �19�.

Abaqus calculations using the EP and HAR models essen-
tially produce the same behavior; the plots for the EP model
are shown in Fig. 13, are similar to those reported for GE
�15� and HAR �19�, and compare well with the Janssen
model until effects of the finite boundary dominate near z
=H. Here the silo dimensions are H=36 m and R=1 m, and

 f =0.2. This is a very tall, narrow “silo,” but such dimen-
sions are necessary to observe the “saturating” behavior. The
value of kJ used in plotting the Janssen equation is taken
from the numerical results at the point r /R=0.5 and z /H
=0.5. As reported for GE �15�, the friction coefficient does
not strongly influence the value of kJ.

While �=5 /3 fixes kJ at �0.4 for GE, in the EP and HAR
models, we are free to choose � and �. The results are quali-
tatively similar to those in Fig. 13, but with kJ dependent on
� or �. The relationships �shown in Fig. 14� are similar to
the variation of the isotropic Poisson’s ratio, �iso, obtained
analytically �Eqs. �42� and �43�� and plotted in Figs. 3 and 4.
That the Janssen concept of “vertical force redirection” is
related to Poisson’s ratio is perhaps not surprising; indeed,
for isotropic linear elasticity at large z �43,44�,

kJ =
�

1 − �
. �58�

So, while the hyperelastic models reproduce the Janssen
model, linear elasticity does as well. As a further point of
comparison, consider a variation on this problem, in which a
pressure equal to the saturation stress is applied at the surface
of the silo ��0�. In the Janssen equation �57�, this gives
�zz /�sat=1, independent of z. Experiments, on the other
hand, find there is a significant “overshoot” of the saturated
value, up to 20% �44,45�. While ILE was also found to pro-
duce an overshoot, it was 30–40 times smaller than the one
observed experimentally, what Ovarlez et al. refer to as a
“giant overshoot effect” �44�. They go on to speculate that
stress-induced anisotropy may play a role in the overshoot,
with a greater stiffness in the vertical direction due to the
applied load. As the hyperelastic models possess stress-
induced anisotropy, we might expect them to reproduce the
effect. But the Abaqus results reveal that the overshoot in all
three hyperelastic models is closer to that predicted by linear
elasticity than observed in experiments. The GE and HAR
models produce similar results, while in the EP model the
decrease to the saturated value is much more gradual than for
any of the other elastic models �Fig. 15�.

D. Layer under a point load

The response function or Green’s function of a granular
material subject to a localized force perturbation was pro-
posed as a fundamental test of granular mechanics �1�. Here
there was an interest in resolving whether or not such sys-
tems were governed by elliptic or hyperbolic equations.
While hyperbolic equations predict a double peaked response
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function in two dimensions and a “ring” peak in three dimen-
sions �as the forces propagate along characteristics�, elliptic
equations predict a single peak, with the half width increas-
ing linearly with depth. Experiments �46–49� and simula-
tions �50–52� seem to support the elliptic picture, at least for
large, frictional, disordered systems under relatively light
loads.

A first point of comparison here is the analytical solution
for an infinite elastic half space �53�, due to Boussinesq �54�
and Cerutti �55�. With a force F applied to a point on its
surface, the vertical stress at depth h and lateral distance r is
given by

�zz =
3F

2�

h3

�r2 + h2�5/2 . �59�

Here and throughout, we report instead the renormalized
value

C �
h2�zz

F
=

1

� r2

h2 + 1�5/2 �60�

such that

�
0



2�C�r��r�dr� = 1. �61�

The Boussinesq-Cerutti solution depends only on the per-
turbing force and position; it has no dependence on the elas-
tic constants. A finite system should be qualitatively similar,
but will have some dependence on the elastic constants �i.e.,
Poisson’s ratio� and the applied boundary conditions. As the
shape of the profile found in experiments indicates elliptic
governing equations, there have been attempts to model the
problem using linear elasticity �both isotropic �47,49� and
anisotropic �48�� and GE �15�. Serero et al. �47� find that the
effect of a finite system size is primarily that it narrows the
stress response function. The bottom boundary condition has
a significant effect on the peak; in both cases, the z displace-
ment, Uz, is zero, but a “smooth” bottom ��rz=0� produces a
sharper peak than a “rough” bottom �Ur=0�. Bräuer et al.
claim that this boundary condition has little effect �15�; their
curve for linear elasticity is also noticeably lower than both
cases given by Serero et al. �47�. They find a response func-
tion for GE that is qualitatively similar, and narrower than
the ILE and Boussinesq-Cerutti solutions. With � fixed at the
maximum yield angle in GE, there are no parameters to ad-
just that would affect the shape or height of the peak. It is not
clear then how GE might account for variations in the peak
height observed experimentally �47,49�. Then again, Serero
et al. find that the response function is not strongly influ-
enced by the value of Poisson’s ratio, except for inadmissible
values greater than 1/2. Thus, isotropic linear elasticity was
considered ill-suited to describe granular media, though
qualitatively the behavior is indeed elliptic.

Following the problem description given by Bräuer et al.,
Abaqus results have been obtained for the response function
of the ILE, GE, EP, and HAR models. A small piston of
diameter D=1.456 cm applies a pressure P1=500 Pa at the

surface of a granular disk of height h=8 cm. The radius of
the disk R need only be large enough that the presence of the
side walls does not significantly influence the response func-
tion at h=8 cm; R=16 cm is found to be sufficient, and the
walls are considered rigid and smooth. In reality, the surface
of the layer outside the piston is a free surface; but as before,
this is problematic in the hyperelastic models, where zero
pressure boundaries cannot be handled numerically. A sur-
face force P0=150 Pa is applied to avoid these issues, and
the stress normalized accordingly:

C �
4h2

P1�D2 ��zz − P0 − �gh� . �62�

Results for GE and ILE are shown in Fig. 16. The ILE results
are in quantitative agreement with those of Serero et al. �47�,
the curve narrowing due to finite system size and signifi-
cantly more so for the smooth boundary condition. The same
effects are evident in the GE calculation, in contrast with
those reported by Bräuer et al. �15�; both the GE and ILE
peaks are higher than the values presented there.

As the rough bottom boundary more accurately reflects
the experiment conditions, this condition is employed in the
EP and HAR calculations. Even so, both the EP and HAR
models give peak heights significantly higher than predicted
by GE and ILE, and observed in experiments �Fig. 17�. The
HAR model gives more reasonable results for increasing val-
ues of �, though recall it was smaller values of � that gave
better results for the stress dependent elastic moduli. The EP
model dramatically overestimates the peak height, by about
an order of magnitude compared with some experiments,
where the peak height ranged from �0.3–0.8 �47�. Just as
the ILE response proved insensitive to the value of �, the EP
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response function varies little over the entire range of allow-
able values for �. Recall that �=0 is a mechanical stability
limit for the EP model and corresponds to �iso=1 /2, while
��8 implies �iso�0, which while theoretically admissible
is not expected here.

So, of the hyperelastic models considered here, the EP
model, which seemed to best capture the type of stress-
induced anisotropy observed for Young’s modulus, gives the
least accurate response function by a wide margin. As the
shape is relatively insensitive to the only adjustable constant
�, there is no obvious way to resolve the discrepancy. The
similar inability of isotropic linear elasticity to account for
the range of observed data has prompted suggestions that
fabric anisotropy be included in an anisotropic, linear elastic
�ALE� model �46–48�. The simplest case would be a mate-
rial possessing two Young’s moduli, two Poisson’s ratios,
and a shear modulus. A similar “fabric” anisotropy could be
incorporated into any of the hyperelastic models. But the
caution of Serero et al. applies equally well here: taking five
constants as fit parameters will almost certainly produce a
good match to the experiment data. Without good reason to
prescribe this sort of inherent anisotropy, there is probably
little insight to be gained with such a model.

V. CONCLUSIONS

Three recently proposed hyperelastic models for granular
materials have been investigated and compared with experi-
ment data. The three different forms are all formulated to
give elastic moduli that are power law functions of pressure,
in accordance with a multitude of experiments. Aside from
conserving energy and ensuring path independence, begin-
ning with a scalar free energy, rather than simply a nonlinear
stress-strain �or incremental stress-strain� relation, has a
number of useful consequences for granular materials.
Among these are stress-induced anisotropy, coupling be-
tween shear and normal stresses that gives rise to shear dila-
tancy, and �in two of the three models� a prohibition of ten-
sile states and a limit on the ratio of stress invariants.

In the case of granular elasticity �GE�, the limiting stress
ratio is the result of mechanical instability. While this gives
appropriate limits on the stress ratio for a triaxial test, the
yield angle of a plane has an unexpected maximum of �
�26.5° for Hertz contacts, lower still for higher power laws
�e.g., a=1�.

Models proposed by Einav and Puzrin �EP� and Houlsby,
Amorosi, and Rojas �HAR� employed similar ideas based on

the Gibbs �rather than Helmholtz� free energy. While elastic
moduli obtained from each model are power laws when plot-
ted against the mean stress, they have rather different depen-
dence on the individual stress components, and generally do
not agree with forms well established by experiments. An
exception is Young’s modulus in the EP model, which varies
only weakly with the out of plane normal stresses.

All three hyperelastic models were implemented in the
finite element code Abaqus for comparison with each other
and a series of experiments originally considered by Jiang
and Liu: stress distributions under sand piles and silos, and
the granular response function. Results were qualitatively
similar for all models. For both sand piles and the response
function, peak stresses were very insensitive to the elastic
constants, and were not able to account for the variability of
peak heights observed in experiments. These may be largely
due to preparation dependence of the piles and layers, and
some mechanism to account for this should be added to mod-
els of this type. Allowing for varying density is one possibil-
ity, and it was shown previously that this could account for
the sand pile stress dip that is sometimes observed.

The hyperelastic models match the Janssen model for si-
los, with the vertical stress saturating with depth due to wall
friction, but this behavior is equally well captured by isotro-
pic linear elasticity. If a pressure equal to the saturated value
is added to the surface of the silo, the Janssen model gives
�zz /�sat=1 everywhere, while a substantial “overshoot” �up
to 20%� of the saturated stress is observed in experiments.
Linear elasticity predicts a very small overshoot, less than
1%. All three hyperelastic models give an overshoot of
around 2%, closer to the linear elastic case than reality. This
may indicate that the large overshoot is not due to stress-
induced anisotropy, or at least that the present models do not
predict this anisotropy correctly.

Finally, it should be noted that many yield surfaces de-
pend on the third stress invariant, while the Drucker-Prager
surface predicted by GE does not. As the observed stress-
induced anisotropy in the shear moduli can also only result
from a three-invariant model, this may be a point for further
investigation.
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